
EQ Coil - Comparison Chart

	erse	Mundorf	Jantzen	Solen	Intertechnik	Result
Trade name	XQ coils	BL140	Perfect Lay	Air Coils	CU 1.4mm	
Wheeler formula	Yes	No	Yes	No	No	Higher DCR and lower Q factor
Varnish Impregnated	Yes	Yes	Yes	No	No	Varnish impregnated coils offer the lowest possible microfonic distortion
Hysteresis tension devices	Yes	No	No	No	No	Inconsistent winding factor and DCR's
Precision Orthocyclic tooling matched to .001"	Yes	No	No	No	No	Improved matching of coils. Lower inductive tolerance.
Computerized layer winding	Yes	No	No	No	No	Improved layering and lower DCR.
Tolerance	1%	3%	1%	3%	3%	Lower tolerances can assure your coil is closer to the advertised value
1.0mh #14AWG coil DCR CLAIMED	0.208 Ω	0.30 Ω	0.21 Ω	NA	0.28 Ω	Higher DCRs result in increased power loss and reduced performance.
1.0mh #14AWG coil DCR MEASURED	0.211 Ω	0.306 Ω	0.215 Ω	NA	0.293 Ω	Higher DCRs result in increased power loss and reduced